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Abstract

The neighbors degree sum (NDS) energy of a graph is determined by the sum of its absolute
eigenvalues from its corresponding neighbors degree sum matrix. The non-diagonal entries
of NDS−matrix are the summation of the degree of two adjacent vertices, or it is zero for non-
adjacent vertices, whereas for the diagonal entries are the negative of the square of vertex degree.
This study presents the formulas of neighbors degree sum energies of commuting and non-
commuting graphs for dihedral groups of order 2n, D2n, for two cases−odd and even n. The
results in this paper comply with the well known fact that energy of a graph is neither an odd
integer nor a square root of an odd integer.
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1 Introduction

For n ≥ 3, the non-abelian dihedral group of order 2n, having the composition as its operation,
is a group comprises of motion of the regular n-gon concerning reflection and rotation, denoted
by D2n =

〈
a, b : an = b2 = e, bab = a−1

〉
[2]. The center of D2n is either Z (D2n) = {e} for odd

n, or Z (D2n) =
{
e, a

n
2

}
for even n. For ai ∈ D2n, its centralizer is CD2n(ai) = {aj : 1 ≤ j ≤

n} and for aib ∈ D2n, its centralizer is either CD2n(aib) = {e, aib}, if n is odd or CD2n(aib) ={
e, a

n
2 , aib, a

n
2 +ib

}
, if n is even.

The set of vertices of both commuting and non-commuting graphs is the set which contains
all elements of G, excluding the central elements Z(G), written as G\Z(G). The non-commuting
graph of a groupG, denoted by ΓG, is constructed by joining two distinct vertices vp, vq ∈ G\Z(G)
with an edge whenever vpvq 6= vqvp [1]. The complement of ΓG is the commuting graph of a
group G, Γ̄G, with two distinct vertices vp, vq ∈ G\Z(G) are adjacent whenever vpvq = vqvp [5].
In addition, this graph is also related to the results in [6, 21, 23, 22], in which the focus group
is symmetric group of order n, and in [17, 18] which deal with the symplectic group, and in [4]
which discusses the generalized complement of the commuting graph.

As a matter of fact, ΓG and Γ̄G can be associated with the adjacency matrix, which is an n ×
n matrix A(ΓG) = [apq] or A(Γ̄G) = [bpq] whose entries apq or bpq are equal to one if vp and
vq are adjacent; otherwise, it is zero. The characteristic polynomial of ΓG (or Γ̄G) is defined by
PA(ΓG)(λ) = det (λIn −A(ΓG)) (or PA(Γ̄G)(λ) = det

(
λIn −A(Γ̄G)

)
, where In is an n× n identity

matrix. The roots of PA(ΓG)(λ) = 0 (or PA(Γ̄G)(λ) = 0) are known as the eigenvalues of ΓG (or
Γ̄G), denoted as λ1, λ2, . . . , λn. The spectrum of ΓG (or Γ̄G), denoted by Spec(ΓG) (or Spec(Γ̄G))
is the list of eigenvalues λ1, λ2, . . . , λm, wherem ≤ n, together with their respective multiplicities
k1, k2, . . . , km, written by

{
λk11 , λ

k2
2 , . . . , λ

km
m

}
.

The energy ofΓG (or Γ̄G) is the sumof all |λ1|, |λ2|, . . . , |λn| ofΓG (or Γ̄G) or
∑n
i=1 |λi|. Gutman

pioneered this definition in 1978 [13] and subsequently applied it in theChemistry field to estimate
the property of molecules regarding the π-electron energy. In this case, a molecule is viewed as
a graph, with carbon atoms as vertices and hydrogen bonds between carbon atoms as edges. It
should be noted that the adjacency energy is never an odd number [3] nor the square root of an
odd number [24].

We define the spectral radius ofΓG as ρ(ΓG) = max {λ|λ ∈ Spec(ΓG)}. In otherwords, ρ(ΓG) is
a non-negative real numberwith a center at the origin of the complex plane and is the smallest disc
radius containing all the eigenvalues of ΓG [15]. A study of the spectra radius problem of several
graphs has been conducted. A discussion on a spectral radius for the power graph for dihedral
groups can be found in [8], whereas [11] describes the signless Laplacian energy and spectral
radius for a directed graph. In addition, [14] presents the spectral distance of the hypercube and
line graphs.

There has been significant development in algebraic graph theory with regard to commuting
and non-commuting graphs over the years. As can be seen in [20, 28, 26, 27], which provide de-
tailed description on the spectral and energy problem of commuting and non-commuting graphs
especially for dihedral groups using the spectrumof adjacency, degree sum, degree exponent sum,
maximum degree, and minimum degree matrices associated with ΓG and Γ̄G. Similarly, the spec-
trum associatedwith an adjacencymatrix for commuting graphs for non-abelian finite groups can
be found in [9]. In addition, [10] explores broadly on the ordinary spectrum and energy of ΓG for
finite groups, including dihedral groups.
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Research has been conducted in graph energies to a significant extent over the past fewdecades,
especially those related tomatrices of graphs inwhich their entries are associatedwith the number
of vertices adjacent to a vertex vp or simply called as the degree of that vertex, denoted by dvp . One
of them is an n× nmatrix called neighbors degree sum (NDS) matrix introduced by Boregowda
and Jummannaver [16]. If we represent ΓG or Γ̄G using NDS−matrix, then NDS(ΓG) = [ndspq]
or NDS(Γ̄G) = [ndspq] whose (p, q)−th entry is

ndspq =


−d2

vp , if vp = vq
dvp + dvq , if vp and vq are adjacent
0, otherwise

.

However, to the best of our knowledge, limited articles discuss on the energy of ΓG and Γ̄G of
the dihedral groups using NDS eigenvalues. Therefore, the research objective of this study is to
present a complete formula of neighbors degree sum energy of ΓG and Γ̄G for D2n, n ≥ 3.

2 Preliminaries

The following are some fundamental results that are used in this work to formulate the char-
acteristic polynomials of ΓG and Γ̄G.

Lemma 2.1. [25] If w, x, y and z are real numbers, and In be the n × n identity matrix and Jn be the
n× n matrix whose all entries are equal to 1, then the determinant of the (n1 + n2)× (n1 + n2) matrix of
the form ∣∣∣∣ (λ+ w)In1 − wJn1 −yJn1×n2

−zJn2×n1
(λ+ x)In2

− xJn2

∣∣∣∣
can be simplified in an expression as

(λ+ w)n1−1(λ+ x)n2−1 ((λ− (n1 − 1)w) (λ− (n2 − 1)x)− n1n2yz) ,

where 1 ≤ n1, n2 ≤ n and n1 + n2 = n.

Theorem 2.1. [12] If a square matrix M =

[
A B
C D

]
can be partitioned into four blocks A,B,C,D,

where |A| 6= 0, then

|M | =
∣∣∣∣ A B
O D − CA−1B

∣∣∣∣ = |A|
∣∣D − CA−1B

∣∣ .
Moreover, we also use row and column operations to formulate the determinants of the charac-

teristic polynomial of ΓG and Γ̄G. Therefore, we define the following notations: (i) Ri is the i−th
row; (ii) R′i is the new i−th row obtained from a row operation; (iii) Ci is the i−th column; and
(iv)C ′i is the new i−th column obtained from a column operation of the characteristic polynomial
of ΓG and Γ̄G.

On the other hand, the following are some underlying results focusing on the degree of vertices
of ΓG and Γ̄G for G = D2n\Z(D2n) where D2n is the dihedral groups of order 2n and Z(D2n) is
its center.

Theorem 2.2. [19] Let ΓG be the non-commuting graph on G, where G = D2n\Z(D2n). Then
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1. the degree of ai on ΓG is dai = n, and

2. the degree of aib on ΓG is daib =

{
2(n− 1), if n is odd
2(n− 2), if n is even.

Theorem 2.3. [28] Let Γ̄G be the commuting graph for G, where G = D2n\Z(D2n). Then

1. the degree of ai on Γ̄G is dai =

{
n− 2, if n is odd
n− 3, if n is even, and

2. the degree of aib on Γ̄G is daib =

{
0, if n is odd
1, if n is even.

3 Main Results

This section presents the results on the energy of ΓG and Γ̄G for dihedral groups using the
corresponding neighbors degree sum matrix. For n ≥ 3, we consider two cases−1) odd n and 2)
even n, because of the difference in the center properties of the dihedral group D2n.

3.1 Neighbors Degree Sum Energy of Non-Commuting Graph for Dihedral Groups

Theorem 3.1. Let ΓG be the non-commuting graph on G = D2n\Z(D2n), where n ≥ 3. Then the
neighbors degree sum energy for ΓG is

ENDS(ΓG) =

{
(n− 2)2n2 + 4n(n− 1)2 +

√
n4 + 4n(n− 1)(3n− 2)2, for odd n

(n− 3)2n2 + 4n(n− 2)2 +
√
n4 + 4n(n− 2)(3n− 4)2, for even n.

Proof. 1. When n is odd, considering the definition of the neighbors degree sum matrix to-
gether with the centralizer of each element in D2n and the properties from Theorem 2.2,
then NDS(ΓG) is a (2n− 1)× (2n− 1) matrix as follows:

NDS(ΓG) =

[
−n2In−1 (3n− 2)J(n−1)×n

(3n− 2)Jn×(n−1) −
(
4(n− 1)2 + 4(n− 1)

)
In + 4(n− 1)Jn

]
.

Here, the characteristic polynomial of NDS(ΓG) can be written by

PNDS(ΓG)(λ) =

∣∣∣∣ (λ+ n2)In−1 −(3n− 2)J(n−1)×n

−(3n− 2)Jn×(n−1)

(
λ+ 4(n− 1)2 + 4(n− 1)

)
In − 4(n− 1)Jn

∣∣∣∣ . (1)

In order to determine the roots of PNDS(ΓG)(λ) = 0, elementary row and column operations
on PNDS(ΓG)(λ) need to be performed.

Step 1: For every 1 ≤ i ≤ n− 1, we substitute Rn+i by R
′

n+i = Rn+i −Rn. Then we see that
Equation (1) is

∣∣∣∣∣∣
(λ+ n2)In−1 −(3n− 2)J(n−1)×1 −(3n− 2)J(n−1)×(n−1)

−(3n− 2)J1×(n−1) λ+ 4(n− 1)2 −4(n− 1)J1×(n−1)

0(n−1) −
(
λ+ 4(n− 1)2 + 4(n− 1)

)
J(n−1)×1

(
λ+ 4(n− 1)2 + 4(n− 1)

)
In−1

∣∣∣∣∣∣ . (2)
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Step 2: We replaceCn byC
′

n = Cn+Cn+1+Cn+2+. . .+C2n−1, thenwe deduce that Equation
(2) is∣∣∣∣∣∣

(λ+ n2)In−1 −n(3n− 2)J(n−1)×1 −(3n− 2)J(n−1)×(n−1)

−(3n− 2)J1×(n−1) λ −4(n− 1)J1×(n−1)

0n−1 0(n−1)×1

(
λ+ 4(n− 1)2 + 4(n− 1)

)
In−1

∣∣∣∣∣∣ . (3)

Step 3: Using Theorem 2.1 with

A =

[
(λ+ n2)In−1 −n(3n− 2)J(n−1)×1

−(3n− 2)J1×(n−1) λ

]
, B =

[
−(3n− 2)J(n−1)×(n−1)

−4(n− 1)J1×(n−1)

]
, C =

0(n−1)×n, and D =
(
λ+ 4(n− 1)2 + 4(n− 1)

)
In−1, then Equation (3) is the form of

PNDS(ΓG)(λ) =

[
A B
C D

]
= |A| |D| . (4)

Now we calculate the first determinant |A|with the next steps.

Step 4: We replace Ci by C
′

i = Ci − Cn−1, for all 1 ≤ i ≤ n− 2. Then

|A| =

∣∣∣∣∣∣
(λ+ n2)In−2 0(n−2)×1 −n(3n− 2)J(n−2)×1

−(λ+ n2)J1×(n−2) λ+ n2 −n(3n− 2)
01×(n−2) −(3n− 2) λ

∣∣∣∣∣∣ . (5)

Step 5: Replace Rn−1 by R′n−1 = Rn−1 + R1 + R2 + . . . + Rn−2, then Equation (5) can be
written as

|A| =

∣∣∣∣∣∣
(λ+ n2)In−2 0(n−2)×1 −n(3n− 2)J(n−2)×1

01×(n−2) λ+ n2 −n(n− 1)(3n− 2)
01×(n−2) −(3n− 2) λ

∣∣∣∣∣∣ . (6)

Step 6: Again, by Theorem 2.1, we can rewrite Equation (6) as the following:

|A| =
∣∣(λ+ n2)In−2

∣∣ ∣∣∣∣ λ+ n2 −n(n− 1)(3n− 2)
−(3n− 2) λ

∣∣∣∣
=
(
λ+ n2

)n−2 (
λ2 + n2λ− n(n− 1)(3n− 2)2

)
.

(7)

Meanwhile, since |D| is a diagonal matrix, then the immediate |D| is

|D| =
(
λ+ 4(n− 1)2 + 4(n− 1)

)n−1
= (λ+ 4n(n− 1))

n−1
. (8)

Therefore, if we go back to Equation (4), PNDS(ΓG)(λ) is the product of Equations (7) and
(8) as the following

PNDS(ΓG)(λ) =
(
λ+ n2

)n−2 (
λ2 + n2λ− n(n− 1)(3n− 2)2

)
(λ+ 4n(n− 1))

n−1
.

Hence, we get the spectrum of ΓG,

Spec(ΓG) =


(
−n2

2
+

√
n4 + 4n(n− 1)(3n− 2)2

2

)1

, (−4n(n− 1))n−1 ,

(
−n2

)n−2
,

(
−n2

2
−
√
n4 + 4n(n− 1)(3n− 2)2

2

)1
 ,

and finally we see that

ENDS(ΓG) = (n− 2)2n2 + 4n(n− 1)2 +
√
n4 + 4n(n− 1)(3n− 2)2.
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2. By Theorem 2.2 for even n, the neighbors degree sum matrix of ΓG, NDS(ΓG) is an (2n −
2)× (2n− 2) matrix as follows:


−n2In−2 (3n − 4)J(n−2)×n

2
(3n − 4)J(n−2)×n

2
(3n − 4)Jn

2
×(n−2) −

(
4(n − 2)2 + 4(n − 2)

)
I n
2

+ 4(n − 2)Jn
2

4(n − 2)(J − I)n
2

(3n − 4)Jn
2
×(n−2) 4(n − 2)(J − I)n

2
−
(
4(n − 2)2 + 4(n − 2)

)
I n
2

+ 4(n − 2)Jn
2

 .

Here, PNDS(ΓG)(λ) is
∣∣∣∣∣∣∣∣∣∣

(λ + n2)In−2 −(3n − 4)J(n−2)×n
2

−(3n − 4)J(n−2)×n
2

−(3n − 4)Jn
2
×(n−2)

(
λ + 4(n − 2)2 + 4(n − 2)

)
I n
2
− 4(n − 2)Jn

2
−4(n − 2)(J − I)n

2
−(3n − 4)Jn

2
×(n−2) −4(n − 2)(J − I)n

2

(
λ + 4(n − 2)2 + 4(n − 2)

)
I n
2
− 4(n − 2)Jn

2

∣∣∣∣∣∣∣∣∣∣
. (9)

In order to determine λ, elementary row and column operations on PNDS(ΓG)(λ) need to be
performed

Step 1: For every 1 ≤ i ≤ n
2 , we replaceRn−2+n

2 +iwith the new rowR
′

n−2+n
2 +i = Rn−2+n

2 +i−
Rn−2+i. Then we see that Equation (9) is

∣∣∣∣∣∣∣
(λ+ n2)In−2 −(3n− 4)J(n−2)×n

2
−(3n− 4)J(n−2)×n

2
−(3n− 4)Jn

2
×(n−2)

(
λ+ 4(n− 2)2 + 4(n− 2)

)
In

2
− 4(n− 2)Jn

2
−4(n− 2)(J − I)n

2
0n

2
×(n−2) −(λ+ 4(n− 2)2)In

2
(λ+ 4(n− 2)2)In

2

∣∣∣∣∣∣∣ . (10)

Step 2: We replace Cn−2+i by the new column C ′n−2+i = Cn−2+i + Cn−2+n
2 +i, for every

1 ≤ i ≤ n
2 , then Equation (10) can be stated as
∣∣∣∣∣∣∣

(λ+ n2)In−2 −2(3n− 4)J(n−2)×n
2

−(3n− 4)J(n−2)×n
2

−(3n− 4)Jn
2
×(n−2)

(
λ+ 4(n− 2)2 + 8(n− 2)

)
In

2
− 8(n− 2)Jn

2
−4(n− 2)(J − I)n

2
0n

2
×(n−2) 0n

2
(λ+ 4(n− 2)2)In

2

∣∣∣∣∣∣∣ . (11)

Step 3: According to Theorem 2.1 with

A =

[
(λ+ n2)In−2 −2(3n− 4)J(n−2)×n

2

−(3n− 4)Jn
2 ×(n−2)

(
λ+ 4(n− 2)2 + 8(n− 2)

)
In

2
− 8(n− 2)Jn

2

]
,

B =

[
−(3n− 4)J(n−2)×n

2

−4(n− 2)(J − I)n
2

]
, C = 0n

2 ×(n−2+n
2 ), and D = (λ + 4(n − 2)2)In

2
, then Equation

(11) is the form of

PNDS(ΓG)(λ) =

[
A B
C D

]
= |A| |D| . (12)

Now we calculate the first determinant, |A|with the next steps:

Step 4: For every 1 ≤ i ≤ n
2 −1, replaceRn−1+i with the new rowR

′

n−1+i = Rn−1+i−Rn−1.
Then we see that

|A| =

∣∣∣∣∣∣∣∣∣∣
(λ + n2)In−2 −2(3n − 4)J(n−2)×1 −2(3n − 4)J(n−2)×(n

2
−1)

−(3n − 4)J1×(n−2) λ + 4(n − 2)2 −8(n − 2)J1×(n
2
−1)

0(n
2
−1)×(n−2) −

(
λ + 4(n − 2)2 + 8(n − 2)

)
J(n

2
−1)×1

(
λ + 4(n − 2)2 + 8(n − 2)

)
I n
2
−1

∣∣∣∣∣∣∣∣∣∣
. (13)

Step 5: We replace Cn−1 by the new column C ′n−1 = Cn−1 +Cn+Cn+1 + . . .+Cn−2+n
2
, then

Equation (13) can be expressed as

|A| =

∣∣∣∣∣∣∣
(λ+ n2)In−2 −n(3n− 4)J(n−2)×1 −2(3n− 4)J(n−2)×(n

2
−1)

−(3n− 4)J1×(n−2) λ −8(n− 2)J1×(n
2
−1)

0(n
2
−1)×(n−2) 0(n

2
−1)×1

(
λ+ 4(n− 2)2 + 8(n− 2)

)
In

2
−1

∣∣∣∣∣∣∣ . (14)

Step 6: According to Theorem 2.1, then we can express Equation (14) as

|A| = |E| |F | , (15)
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with |E| =
∣∣∣∣ (λ+ n2)In−2 −n(3n− 4)J(n−2)×1

−(3n− 4)J1×(n−2) λ

∣∣∣∣ and
|F | =

∣∣(λ+ 4(n− 2)2 + 8(n− 2)
)
In

2 −1

∣∣.
Step 7: Now we calculate the first determinant, |E|, by replacing Ci with C ′i = Ci − Cn−2,
for all 1 ≤ i ≤ n− 3. Then

|E| =

∣∣∣∣∣∣
(λ+ n2)In−3 0(n−3)×1 −n(3n− 4)J(n−3)×1

−(λ+ n2)J1×(n−3) λ+ n2 −n(3n− 4)
01×(n−3) −(3n− 4) λ

∣∣∣∣∣∣ . (16)

Step 8: Now replace Rn−2 by R′n−2 = Rn−2 +R1 +R2 + . . .+Rn−3, then Equation (16) can
be written by

|E| =

∣∣∣∣∣∣
(λ+ n2)In−3 0(n−3)×1 −n(3n− 4)J(n−3)×1

01×(n−3) λ+ n2 −n(n− 2)(3n− 4)
01×(n−3) −(3n− 4) λ

∣∣∣∣∣∣ . (17)

Step 9: Again, by Theorem 2.1, then Equation (17) can be expressed as the the following:

|E| =
∣∣(λ+ n2)In−3

∣∣ ∣∣∣∣ λ+ n2 −n(n− 2)(3n− 4)
−(3n− 4) λ

∣∣∣∣
=
(
λ+ n2

)n−4 (
λ2 + n2λ− n(n− 2)(3n− 4)2

)
.

(18)

Step 10: Since |F | is a diagonal matrix, immediately |F | is the product of the main diagonal
entries as follows:

|F | =
(
λ+ 4(n− 1)2 + 8(n− 2)

)n
2 −1

= (λ+ 4n(n− 2))
n
2 −1

. (19)

If we go back to Equation (15), then using Equations (18) and (19), we can see |A| as follows:

|A| = (λ+ n2)n−3(λ2 + n2λ− n(n− 2)(3n− 4)2)(λ+ 4n(n− 2))
n
2 −1. (20)

Meanwhile, since |D| is a diagonal matrix, then

|D| = (λ+ 4(n− 2)2)
n
2 . (21)

Finally, following Equations (20) and (21), we see Equation (12) as the following expression:

PNDS(ΓG)(λ) = (λ+ n2)n−3(λ2 + n2λ− n(n− 2)(3n− 4)2)(λ+ 4n(n− 2))
n
2
−1(λ+ 4(n− 2)2)

n
2 .

The spectrum of ΓG is

Spec(ΓG) =


(
−n2

2
+

√
n4 + 4n(n− 2)(3n− 4)2

2

)1

, (−4n(n− 2))
n
2
−1 , (−n2)n−3,

(
−4(n− 2)2

)n
2 ,

(
−n2

2
−
√
n4 + 4n(n− 2)(3n− 4)2

2

)1
 .

Therefore, the NDS−energy of ΓG is

ENDS(ΓG) = (n− 3)2n2 + 4n(n− 2)2 +
√
n4 + 4n(n− 2)(3n− 4)2.
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3.2 Neighbors Degree Sum Energy of Commuting Graph for Dihedral Groups

Theorem 3.2. Let Γ̄G be the commuting graph on G, where G = D2n\Z(D2n), where n ≥ 3. Then the
neighbors degree sum NDS energy for Γ̄G is

ENDS(Γ̄G) =

{
(n+ 1)(n− 2)2, for odd n
n(n− 3)2 + 2n, for even n.

Proof. 1. When n is odd, considering the definition of the neighbors degree sum matrix to-
gether with the centralizer of each element in D2n and the properties from Theorem 2.3,
then NDS(Γ̄G) is an (2n− 1)× (2n− 1) matrix as follows:

NDS(Γ̄G) =

[
−((n− 2)2 + 2(n− 2))In−1 + 2(n− 2)Jn−1 0(n−1)×n

0n×(n−1) 0n

]
.

We then obtain the characteristic polynomial of NDS(Γ̄G) as given below:

PNDS(Γ̄G)(λ) =

∣∣∣∣ (λ+ (n− 2)2 + 2(n− 2))In−1 − 2(n− 2)Jn−1 0(n−1)×n
0n×(n−1) λIn

∣∣∣∣ . (22)

By using Theorem 2.1 with A = (λ+ (n− 2)2 + 2(n− 2))In−1− 2(n− 2)Jn−1, B = 0(n−1)×n,
C = 0n×(n−1), D = λIn, then Equation (22) can be expressed as

PNDS(Γ̄G)(λ) = |A| |D| . (23)

It is clear that

|D| = λn. (24)

Now see consider |A| and use the following steps of row and column operations:
Step 1: For every 2 ≤ i ≤ n− 1, replace Ri by R

′

i = Ri −R1. Then we see that

|A| =
∣∣∣∣ λ+ (n− 2)2 −2(n− 2)J1×(n−2)

−(λ+ (n− 2)2 + 2(n− 2))J(n−2)×1 (λ+ (n− 2)2 + 2(n− 2))In−2

∣∣∣∣ . (25)

Step 2: We replace C1 by C ′1 = C1 + C2 + C3 + . . . + Cn−1, then we deduce that Equation
(25) is an upper triangular matrix

|A| =
∣∣∣∣ λ+ (n− 2)2 −2(n− 2)J1×(n−2)

0(n−2)×1 (λ+ (n− 2)2 + 2(n− 2))In−2

∣∣∣∣ . (26)

Thus, |A| is the product of the main diagonal entries of Equation (26) as the following:

|A| = (λ− (n− 2)2)(λ+ n(n− 2))n−2. (27)

From Equations (24) and (27), then our desired equation in (23) is

PNDS(Γ̄G)(λ) = λn(λ− (n− 2)2)(λ+ n(n− 2))n−2.

Hence, the spectrum of Γ̄G is

Spec(Γ̄G)) =
{(

(n− 2)2
)1
, (0)n, (−n(n− 2))n−2

}
,

and finally, we see that

ENDS(Γ̄G) = (n+ 1)(n− 2)2.
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2. By Theorem 2.3 for the even n, thenNDS(Γ̄G) is an (2n−2)×(2n−2)matrix as the following:

NDS(Γ̄G) =

 −((n− 3)2 + 2(n− 3))In−2 + 2(n− 3)Jn−2 0(n−2)×n
2

0(n−2)×n
2

0n
2 ×(n−2) −In

2
2In

2

0n
2 ×(n−2) 2In

2
−In

2

 .
We then get the characteristic polynomial of NDS(Γ̄G) as follows:

PNDS(Γ̄G)(λ) =

∣∣∣∣∣∣∣
(λ+ (n− 3)2 + 2(n− 3))In−2 − 2(n− 3)Jn−2 0(n−2)×n

2
0(n−2)×n

2

0n
2
×(n−2) (λ+ 1)In

2
−2In

2

0n
2
×(n−2) −2In

2
(λ+ 1)In

2

∣∣∣∣∣∣∣ . (28)

By using Theorem 2.1 with A = (λ+ (n− 3)2 + 2(n− 3))In−2− 2(n− 3)Jn−2, B = 0(n−2)×n,

C = 0n×(n−2), and D =

[
(λ+ 1)In

2
−2In

2

−2In
2

(λ+ 1)In
2

]
, then Equation (28) is the form of

PNDS(Γ̄G)(λ) =

∣∣∣∣ A B
C D

∣∣∣∣ = |A| |D| . (29)

Now we consider |A|with the following steps:

Step 1: We replace Ri by R
′

i = Ri −R1, for every 2 ≤ i ≤ n− 2. Then we see that

|A| =
∣∣∣∣ λ+ (n− 3)2 −2(n− 3)J1×(n−3)

−(λ+ (n− 3)2 + 2(n− 3))J(n−3)×1 (λ+ (n− 3)2 + 2(n− 3))In−3

∣∣∣∣ . (30)

Step 2: We replace C1 by C ′1 = C1 + C2 + . . .+ Cn−2, then we deduce that Equation (30) is
an upper triangular matrix

|A| =
∣∣∣∣ λ+ (n− 3)2 −2(n− 3)J1×(n−3)

0(n−3)×1 (λ+ (n− 3)2 + 2(n− 3))In−3

∣∣∣∣ . (31)

Thus, |A| is the product of the main diagonal entries of Equation (31) as the following:

|A| = (λ− (n− 3)2)(λ+ (n− 1)(n− 3))n−3. (32)

Meanwhile, by replacing Rn
2 +i by R

′
n
2 +i = Rn

2 +i −Ri, for every 1 ≤ i ≤ n
2 in |D|, then

|D| =
∣∣∣∣ (λ+ 1)In

2
−2In

2

−(λ+ 3)In
2

(λ+ 3)In
2

∣∣∣∣ , (33)

and following by replacingCi byC
′

i = Ci+Cn
2 +i, for every 1 ≤ i ≤ n

2 in Equation (33), then

|D| =
∣∣∣∣ (λ− 1)In

2
−2In

2

0n
2

(λ+ 3)In
2

∣∣∣∣ = (λ− 1)
n
2 (λ+ 3)

n
2 . (34)

From Equations (32) and (34), then our required result in Equation (29) is

PNDS(Γ̄G)(λ) = (λ− (n− 3)2)(λ+ (n− 1)(n− 3))n−3(λ− 1)
n
2 (λ+ 3)

n
2 .

Therefore, the immediate spectrum and NDS−energy of Γ̄G are

Spec(Γ̄G) =
{(

(n− 3)2
)1
, (1)

n
2 , (−3)

n
2 , (−(n− 1)(n− 3))n−3

}
,

ENDS(Γ̄G) = n(n− 3)2 + 2n.

61



M.U. Romdhini et al. Malaysian J. Math. Sci. 17(1): 53-65(2023)53 - 65

3.3 Further Discussion

By inspection on the eigenvalues of the spectrum in Theorems 3.1 and 3.2 and taking the max-
imum of |λi|, then it is possible to derive the following two corollaries.

Corollary 3.1. Let ΓG be the non-commuting graph onG, whereG = D2n\Z(D2n), thenNDS−spectral
radius for ΓG is

ρNDS(ΓG) =

 −n2

2 +

√
n4+4n(n−1)(3n−2)2

2 , if n is odd
−n2

2 +

√
n4+4n(n−2)(3n−4)2

2 , if n is even.

Corollary 3.2. Let Γ̄G be the commuting graph on G, where G = D2n\Z(D2n), then theNDS−spectral
radius for Γ̄G is

ρNDS(Γ̄G) =

{
n(n− 2), if n is odd
(n− 1)(n− 3), if n is even.

It can be observed that theNDS−spectral radius of Γ̄G forG = D2n\Z(D2n) is always an even
integer. While for ΓG, it is never an odd integer.

Moreover, according to the results presented in the previous sections, the energies in Theorems
3.1 and 3.2 yield the following two corollaries:

Corollary 3.3. Let Γ̄G be the commuting graph on G, where G = D2n\Z(D2n), then the NDS−energy
for Γ̄G is always an even integer.

Corollary 3.4. Let ΓG be the non-commuting graph onG, whereG = D2n\Z(D2n), thenNDS−energy
for ΓG is never an odd integer.

The statements in Corollary 3.3 and 3.4 complywith thewell known fact from [3] and [24] that
the energy of a graph is never an odd integer as well as never the square root of an odd integer.

The following is an example of the neighbors degree sum energy of commuting and non-
commuting graphs for D2n, where n = 4.

Example 3.1. LetD8 = {e, a, a2, a3, b, ab, a2b, a3b} andZ(D8) = {e, a2}, whereCD8
(ai) = {e, a, a2, a3},

CD8
(b) = {e, a2, b, a2b} = CD8

(a2b), CD8
(ab) = {e, a2, ab, a3b} = CD8

(a3b). For G = D8\Z(D8), by
using the information on the centralizer of each element in G, then ΓG and Γ̄G are as in Figure 1.

a a3

b ab

a2b a3b

a a3

b ab

a2b a3b

Figure 1: (i) Non-commuting graph onG, ΓG; (ii) Commuting graph onG, Γ̄G
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Now we construct 6× 6 neighbors degree sum matrices of ΓG and Γ̄G as the following:

NDS(ΓG) =

a a3 b ab a2b a3b


a −16 0 8 8 8 8
a3 0 −16 8 8 8 8
b 8 8 −16 8 0 8
ab 8 8 8 −16 8 0
a2b 8 8 0 8 −16 8
a3b 8 8 8 0 8 −16

=

 16I2 8J2 8J2

8J2 −(16 + 8)I2 + 8J2 8(J − I)2

8J2 8(J − I)2 −(16 + 8)I2 + 8J2

 ,
and

NDS(Γ̄G) =

a a3 b ab a2b a3b


a −1 2 0 0 0 0
a3 2 −1 0 0 0 0
b 0 0 −1 0 2 0
ab 0 0 0 −1 0 2
a2b 0 0 2 0 −1 0
a3b 0 0 0 2 0 −1

=

 −(1 + 2)I2 + 2J2 02 02

02 −I2 2I2
02 2I2 −I2

 .

Here the characteristic polynomial of NDS(ΓG) and NDS(Γ̄G) are as follows:

PNDS(ΓG)(λ) = (λ+ 16)3(λ+ 32)2(λ− 16) and PNDS(Γ̄G)(λ) = (λ+ 3)3(λ− 1)3.

By using Maple [7], we have confirmed that

Spec(ΓG) =
{

(16)1, (−16)3, (−32)2
}
and Spec(Γ̄G) =

{
(1)3, (−3)3

}
.

Therefore, the NDS−energy of ΓG and Γ̄G are as follows:

ENDS(ΓG) =(1)|16|+ (3)| − 16|+ (2)| − 32| = 128

=(4− 3)242 + 4 · 4(4− 2)2 +
√

44 + 4 · 4(4− 2)(3 · 4− 4)2

ENDS(Γ̄G) =(3)|1|+ (3)| − 3| = 12 = 4(4− 3)2 + 2(4).

4 Conclusions

The energy formula ofΓG and Γ̄G for dihedral groupD2n, wheren ≥ 3, based on theNDS−eigenvalues,
has beenpresented. TheNDS−energy ofΓG is either (n−2)2n2+4n(n−1)2+

√
n4 + 4n(n− 1)(3n− 2)2,

for oddn, or (n−3)2n2+4n(n−2)2+
√
n4 + 4n(3n− 4)2(n− 2), for evenn. While theNDS−energy

of Γ̄G is either (n + 1)(n − 2)2, for odd n, or n(n − 3)2 + 2n, for even n. It is found that the
NDS−energy formulas we present here for both types of graphs, ΓG and Γ̄G, are all aligned with
previous literature which state that energy of graph is never an odd integer as well as never a
square root of an odd integer.
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